Repetition week 42

Minimal sufficient.

Definition 6.2.11. A sufficient statistics T(X) is called a minimal sufficient statistics if for any other sufficient statistics T'(X), T(X) is a function of T(X).

Theorem 6.2.3

Let $f(x|\theta)$ be the joint pdf/pmf for a sample X. Suppose there exists a T(X) such that for every x and every y, $f(x|\theta)/f(y|\theta)$ is a constant as a function of $\theta \Leftrightarrow T(X) = T(Y)$. Then T(X) is a minimal sufficient statistics for θ .

Maximum likelihood estimation

Likelihood:

$$L(\theta|\mathbf{x}) = f(\mathbf{x}|\theta) = \prod_{i=1}^{n} f(x_i|\theta)$$

$$\hat{ heta}_{\scriptscriptstylearepsilon}(x)$$
 maximizes $L(heta|x)$

$$\hat{ heta}(X)$$
 is the MLE

Candidates: For $\hat{\theta}$

$$\frac{\partial}{\partial \theta_i} L(\boldsymbol{\theta}) = 0 \Leftrightarrow \frac{\partial}{\partial \theta_i} \log L(\boldsymbol{\theta}) = 0$$

Invariance principle:

If $\hat{\theta}$ is the MLE of θ , $\tau(\hat{\theta})$ is the MLE of $\tau(\theta)$.

$$f(\mathbf{x}|\theta) = f(\mathbf{x}|\theta) = \tau^{-1}(\eta) \Rightarrow f(\mathbf{x}|\hat{\theta}) = f(\mathbf{x}|\hat{\theta}) = \tau^{-1}(\hat{\eta}) = f(\mathbf{x}|\hat{\theta}) = \tau^{-1}(\tau(\hat{\theta}))$$

Bayes estimation:

Prior: $\pi(\theta)$ Posterior: $\pi(\theta|x)$

$$\pi(\theta|x) = \frac{f(x,\theta)}{f(x)} = \frac{f(x|\theta)\pi(\theta)}{\int f(x,\theta)d\theta}$$

2 / _1 \